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ABSTRACT
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provides a particularly relevant example.

The impact between bridge
sarthquake shaking, is a phenomenon

enomenon have been investigated 1in

Many aspects of this interesting ph
<hort description of these studies

recent years by several researchers. A
and an appropriate reference list are provided by Maragakis et al. (19903

In these studies, the kinematilc rechanism of the phenomenon has been analyzed
ve been performed in order

and several parametric studies ha
rers associated with this

and explained,
parame

to identify the role of the most important

impact.

udies is the

One aspect that has been neglected 1n all the previous st

I Associate Professor, Civil Engineering Dept., a, Reno

University of Nevad

I1 Professor, Civil Engineering Dept. University of Nevada, Reno

University of Nevada, Reno

III Graduate Student, Civil Engineering Dept.,




r between the deck and
. Il tha C 1’1&'1;6 }_'_'a Een

fe analysils programs g
ents were represented wirn
with a combination of
f representation for +1.
stiffness as well ;-

. rion soil damping, 1t does no
radia aVere collision between the |
to the his paper is the Presentagt
following major gog]

13
I

dynam

§F €

has the :
nergy losses directly related to the

butments have oOnn the response of the Bes .
88 for these losses that cgp

i that e
investigate the effectsnd .
between & bridge decl;aze].ing St .
and (ii) To ‘;i::;;pexisting bridge analysis Pprograms B e oo
in a !

g::i;:dresearchers and englneers.

FORMULATION OF THE PROBLEM

=

) 1":'_ ".. L

; : he
der to investigate U . '
on t}f: 3esponse of the bridge, twoO simplified models were de‘-'EIGped.

Based on this fipyre .

TERT~

S

I’
-

In the first model, hereafter called "model 1", the bridge Structuy.

represented with the system shown ist Fig. 1. il
see that the bridge deck is represented by a rigid mass B | T

translational spring, which accounts for the resistance of the bl"id@; S

. F . b
| .JI
4 e

The abutments are represented with translational SPrings and gaps
abutment spring is activated after the closure of the corresponding ab&- :
UCment

gap, and it is de-activated after the opening of the gap. The BE T fness ¢

e

f; :31; 311;1990)'1 One should note that this model BO88 not take into - -
imgact mzﬁythc;stses_.ults respor}se will be compared with the response of s
hinagpac i _ will be described next, so that the importan :
avestlgated, 1€ should alzo Be noted that all the Csep:if

n

L i _

onse to g : : ' |
Wilson’ | 1:gnamlc ‘oading, a computer progran
°n's ¢ method. remental €quations of motion using the

2 , the bridge SCtructure 1s
=+ Ihe major difference between
C masses are included in the
the closure of either one of
€ deck and the corresponding
the effects of energy losses
9 mentioned here, Ehat the
” longit’Jdinal direction of
SMERES. The stiffnesses of
o0 thi, in tension. However,

Study, the values of




M

P

=
Lo
=

QL

Figure 1. Model |1

Figure 3. Model 3
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Figures 4-5 sh_on»{ 4 comparison of the displacement envelopes of th iddl
mass for a _CO@fflClent of restitution equal to 0.6 Inpboth e :
Eodels Coiiliere}f} have been excited by the 1987 Whit-:tier earthqualfjsesltt ::\li

e seen a the degree of the i .
stiffness of the abut%nent e Sprizz‘?CtT;?;ls tih: mZininioj:pindii on the
that show the maximum displacement of the middle mass for severar; v 515- g
the abutment springs for these different earthquake excitations. aoues =
see that, for softer springs, the effect of the impact on t‘;le. e
response is more significant. MaxLinun

Figures 8-11 show the results of a preliminary study related to usi
model 3 for a simpler representation of the effects of the impact Fi i
8 shows the variation of the energy of the middle mass in the time ;iomaiiu?_e
models 2 and 3. In model 2 the coefficient of restitution, e. was equal tl-;
p.7, while in model 3 the damping, Z, ratio was equal to 3%., The dampin
coefficient in model 3 was evaluated from the assumed damping ratio basef:’l 0;51

the mass and stiffness properties of the middle mass. Figure 9 shows the
comparison between the displacement time history responses of the middle mass
corresponding to the cases described for Fig. 5. Figures 10-11 are similar

to Figs. 8-9 with the only exceptions being that the values of the coeffi-
cient of restitution and the damping ratio were equal to 0.4 and 6%
respectively. From these figures, it is evident that a better correlation

between the energy time histories (Fig. 9) results in a better correlation
between the displacement time histories (Fig. 11). This is consistent with
the criterion used for estimating the equivalent damping ratio, which was
described earlier. In all the cases discussed in Figs. 8-1l1l, the models were
excited by the first ten seconds of the 1940 El Centro earthquake while the
mass properties of the bridge deck and the abutments were evaluated based on
the properties of Nichols Road Overcrossing, a two span reinforced concrete

bridge located in Riverside, California (Maragakis et al. 1990).
CONCLUSIONS - RECOMMENDATIONS FOR FUTURE RESEARCH

Based on the results of this initial study described above, the following

conclusions can be drawn:

i) The energy losses due to impact influences the dynamic response of the
bridge deck mass (middle mass), and they should be considered when the

dynamic response of bridges with seat type abutments is evaluated.

ii) The degree to which impact influence

depends on the size of the abutment gap,
bridge deck and the abutments, the stiffness of the abutment springs,

and the coefficient of restitution used for calculating the impact
udies will be required to

energy losses. Extensive parametric st <

accurately determine the sensitivity of the response to these
parameters.

iii) The procedures for finding an equivalent viscous damper to allow simple

based on the criterion of the

modeling of the effects of impact,
equality of energy losses between models 2 and 3, produced very

promising results. Study of more cases is required in order CO perfect
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